Abstract
The Positive Mass Conjecture for asymptotically flat Riemannian manifolds is a famous open problem in geometric analysis. In this article we consider a variant of this conjecture, namely the Positive Mass Conjecture for closed Riemannian manifolds. We explain why the two positive mass conjectures are equivalent. After that we explain our proof of the following result: If one can prove the Positive Mass Conjecture for one closed simply-connected non-spin manifold of dimension n \(\ge \) 5 then the Positive Mass Conjecture is true for all closed manifolds of dimension n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.