Abstract

Although the number and size of interconnected pores have been identified as the most important aspects of concrete microstructure, comprehensive datasets on shotcrete porosity and pore size distributions are still scarce and their key controls are poorly investigated. In this study we investigate the effects of the spraying process, setting accelerator addition and mix design on the microstructure of real-scale dry- and wet-mix shotcrete and hand-mixed and sprayed accelerated pastes. A newly proposed deconvolution analysis of the pore size distributions, measured by mercury intrusion porosimetry, offers increased precision in determining the critical and median pore diameter parameters. In total >50 samples were analysed. Results show that the dry-mix shotcrete exhibits a shift towards coarser pore sizes (∼100–1 μm) than wet-mix shotcrete. Combinations of different supplementary cementitious materials are favourable for producing wet-mix shotcretes with refined pore structures. The addition of setting accelerators, up to 10 wt-% of binder mass, and the spraying process cause systematic variations in the pore volume and pore structure of (sprayed) paste and shotcrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.