Abstract

The theory of the polynomial residue number system (PRNS), a system in which totally parallel polynomial multiplication can be achieved provided that the arithmetic takes place in some carefully chosen ring, is examined. Such a system is defined by a mapping which maps the problem of multiplication of two polynomials onto a completely parallel scheme where the mapped polynomial coefficients are multiplied pairwise. The properties of the mapping and the rules of operations in the PRNS are proven. Choices of the rings for which the PRNS is defined are also studied. It is concluded that the PRNS can offer significant advantages in those digital signal processing (DSP) applications that involve multiplication-intensive algorithms like convolutions and one-dimensional or multidimensional correlation. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.