Abstract

AbstractThis paper proposes new notions of polynomial depth (called monotone poly depth), based on a polynomial version of monotone Kolmogorov complexity. We show that monotone poly depth satisfies all desirable properties of depth notions i.e., both trivial and random sequences are not monotone poly deep, monotone poly depth satisfies the slow growth law i.e., no simple process can transform a non deep sequence into a deep one, and monotone poly deep sequences exist (unconditionally).We give two natural examples of deep sets, by showing that both the set of Levin-random strings and the set of Kolmogorov random strings are monotone poly deep.KeywordsKolmogorov ComplexityRandom StringPolynomial VersionUniversal Turing MachineLogical DepthThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.