Abstract
AbstractThis paper concerns some spectral properties of the scalar dynamical system defined by a linear delay-differential equation with two positive delays. More precisely, the existing links between the delays and the maximal multiplicity of the characteristic roots are explored, as well as the dominance of such roots compared with the spectrum localization. As a by-product of the analysis, the pole placement issue is revisited with more emphasis on the role of the delays as control parameters in defining a partial pole placement guaranteeing the closed-loop stability with an appropriate decay rate of the corresponding dynamical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IMA Journal of Mathematical Control and Information
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.