Abstract

It is shown that anomalous piezoelectric properties of epitaxial nanostructures arise on the morphotropic phase boundary (MPB) due to the strong flexoelectric effect on dislocation walls. The MPB (typical of many materials) exhibits a coexistence of various phases and partition of these phases to minimum sizes. This minimum size l с (nanoscale) is found using the dislocation theory; it coincides with the distance between individual dislocations in dislocation walls, which is much larger than the Burgers vector b, regardless of the type of crystalline material. The flexoelectric coefficients f are estimated taking into account dimensional relations and experimental data on the rotations of ferroelectric nanodomains in multiferroics. These estimates coincide with classical values. The critical value l с ~ 10b specifies the measured dependence on the dielectric susceptibility χ e , f ~ χ 1/2 . The quantity χ e depends on the frequency of the ac electric field applied to a sample and on the dislocation density. The Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 ceramic composite shows typical frequency dispersion of χ e in a wide frequency range. The frequency dependence of flexoelecric coefficients is shown to reproduce the frequency dependence of permittivity at high frequencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call