Abstract

Recent studies on stochastic oscillations mostly focus on the power spectral analysis. However, the power spectrum yields information only on the frequency of oscillation and cannot differentiate between a stable limit cycle and a stable focus. The cycle flux, introduced by Hill (Hill 1989 Free energy transduction and biochemical cycle kinetics ), is a quantitative measure of the net movement over a closed path, but it is impractical to compute for all possible cycles in systems with a large state space. Through simple examples, we introduce concepts used to quantify stochastic oscillation, such as the cycle flux, the Hill–Qian stochastic circulation and rotation number. We introduce a novel device, the Poincaré–Hill cycle map (PHCM), which combines the concept of Hill’s cycle flux with the Poincaré map from nonlinear dynamics. Applying the PHCM to a reversible extension of an oscillatory chemical system, the Schnakenberg model, reveals stable oscillations outside the Hopf bifurcation region in which the deterministic system contains a limit cycle. Bistable behaviour is found on the small volume scale with high probabilities around both the fixed point and the limit cycle. Convergence to the deterministic system is found in the thermodynamic limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.