Abstract

Abstract Hybrid bearings integrating an external pressurizing source are widely used in high-speed turbomachinery due to their notable advantages, including low friction and wear, enhanced reliability and durability, and accurate rotor positioning, as well as large static stiffness and load carry capacity even lubricated with low viscosity liquids. This paper reports experimental data and predictions to identify the characteristics of pneumatic hammer of hybrid gas bearings, 60 mm in diameter, with increasing feed gas pressures. Pneumatic hammer characteristics with static load stiffnesses and flow rates of the test bearing are recorded for increasing static loads with various shaft center positions. A computational program for modeling of hybrid gas bearings predicts static load characteristics of the test bearings. Predictions show a remarkable agreement with measurements. Comparisons of measurements and predictions reveal that calculated reduced damping factors and damping coefficients of hybrid bearings, relying on volume ratio between recess and fluid film, are reliable indicators to estimate the onset condition of pneumatic hammer instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call