Abstract

It has been suggested that saliency mechanisms play a role in perceptual organization. This work evaluates the plausibility of a recently proposed generic principle for visual saliency: that all saliency decisions are optimal in a decision-theoretic sense. The discriminant saliency hypothesis is combined with the classical assumption that bottom-up saliency is a center-surround process to derive a (decision-theoretic) optimal saliency architecture. Under this architecture, the saliency of each image location is equated to the discriminant power of a set of features with respect to the classification problem that opposes stimuli at center and surround. The optimal saliency detector is derived for various stimulus modalities, including intensity, color, orientation, and motion, and shown to make accurate quantitative predictions of various psychophysics of human saliency for both static and motion stimuli. These include some classical nonlinearities of orientation and motion saliency and a Weber law that governs various types of saliency asymmetries. The discriminant saliency detectors are also applied to various saliency problems of interest in computer vision, including the prediction of human eye fixations on natural scenes, motion-based saliency in the presence of ego-motion, and background subtraction in highly dynamic scenes. In all cases, the discriminant saliency detectors outperform previously proposed methods from both the saliency and the general computer vision literatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.