Abstract

In this paper we introduce a minimax model unifying several classes of single facility planar center location problems. We assume that the transportation costs of the demand points to the serving facility are convex functions {Q i }, i=1,…,n, of the planar distance used. Moreover, these functions, when properly transformed, give rise to piecewise quadratic functions of the coordinates of the facility location. In the continuous case, using results on LP-type models by Clarkson (J. ACM 42:488–499, 1995), Matousek et al. (Algorithmica 16:498–516, 1996), and the derandomization technique in Chazelle and Matousek (J. Algorithms 21:579–597, 1996), we claim that the model is solvable deterministically in linear time. We also show that in the separable case, one can get a direct O(nlog n) deterministic algorithm, based on Dyer (Proceedings of the 8th ACM Symposium on Computational Geometry, 1992), to find an optimal solution. In the discrete case, where the location of the center (server) is restricted to some prespecified finite set, we introduce deterministic subquadratic algorithms based on the general parametric approach of Megiddo (J. ACM 30:852–865, 1983), and on properties of upper envelopes of collections of quadratic arcs. We apply our methods to solve and improve the complexity of a number of other location problems in the literature, and solve some new models in linear or subquadratic time complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.