Abstract

The current work focuses on the Gaussian-Minkowski problem in dimension 2. In particular, we show that if the Gaussian surface area measure is proportional to the spherical Lebesgue measure, then the corresponding convex body has to be a centered disk. As an application, this “uniqueness” result is used to prove the existence of smooth small solutions to the Gaussian-Minkowski problem via a degree-theoretic approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.