Abstract

BackgroundPTV concept is presumed to introduce excessive and inconsistent GTV dose in lung stereotactic body radiotherapy (SBRT). That GTV median dose prescription (D50) and robust optimization are viable PTV–free solution (ICRU 91 report) to harmonize the GTV dose was investigated by comparisons with PTV–based SBRT plans.MethodsThirteen SBRT plans were optimized for 54 Gy / 3 fractions and prescribed (i) to 95% of the PTV (D95) expanded 5 mm from the ITV on the averaged intensity project (AIP) CT, i.e., PTVITV, (ii) to D95 of PTV derived from the van Herk (VH)‘s margin recipe on the mid–ventilation (MidV)–CT, i.e., PTVVH, (iii) to ITV D98 by worst case scenario (WCS) optimization on AIP,i.e., WCSITV and (iv) to GTV D98 by WCS using all 4DCT images, i.e., WCSGTV. These plans were subsequently recalculated on all 4DCT images and deformably summed on the MidV–CT. The dose differences between these plans were compared for the GTV and selected normal organs by the Friedman tests while the variability was compared by the Levene’s tests. The phase–to–phase changes of GTV dose through the respiration were assessed as an indirect measure of the possible increase of photon fluence owing to the type–B dose engine. Finally, all plans were renormalized to GTV D50 and all the dosimetric analyses were repeated to assess the relative influences of the SBRT planning concept and prescription method on the variability of target dose.ResultsBy coverage prescriptions (i) to (iv), significantly smaller chest wall volume receiving ≥30 Gy (CWV30) and normal lung ≥20 Gy (NLV20Gy) were achieved by WCSITV and WCSGTV compared to PTVITV and PTVVH (p > 0.05). These plans differed significantly in the recalculated and summed GTV D2, D50 and D98 (p < 0.05). The inter–patient variability of all GTV dose parameters is however equal between these plans (Levene’s tests; p > 0.05). Renormalizing these plans to GTV D50 reduces their differences in GTV D2, and D98 to insignificant level (p > 0.05) and their inter–patient variability of all GTV dose parameters. None of these plans showed significant differences in GTV D2, D50 and D98 between respiratory phases, nor their inter–phase variability is significant.ConclusionInconsistent GTV dose is not unique to PTV concept but occurs to other PTV–free concept in lung SBRT. GTV D50 renormalization effectively harmonizes the target dose among patients and SBRT concepts of geometric uncertainty management.

Highlights

  • Stereotactic body radiotherapy (SBRT) for non–small cell lung carcinomas (NSCLC) is typically delivered in free breathing condition

  • By coverage prescriptions (i) to (iv), significantly smaller chest wall volume receiving ≥30 Gy (CWV30) and normal lung ≥20 Gy (NLV20Gy) were achieved by WCSITV and WCSGTV compared to PTVITV and PTVVH (p > 0.05)

  • CWV30 was not met in 3 cases by PTVITV and 1 case by PTVVH and WCSITV while it was met in all cases by WCSGTV

Read more

Summary

Introduction

Stereotactic body radiotherapy (SBRT) for non–small cell lung carcinomas (NSCLC) is typically delivered in free breathing condition. To limit the negative impact of respiration–induced organ motion and setup errors on its clinical benefits, passive motion management is often pursued, using either the internal target volume (ITV) concept or the mid–ventilation (MidV) concept [1]. As suggested by Lebredonchel et al [3], when type–B and Monte Carlo (MC) dose algorithms that model lateral electronic equilibrium (LED) are directly used to optimize to PTV D95 a high flux of photon fluence would have to be deposited in the low density lung tissue surrounding the gross tumor volume (GTV). The GTV dose may experience increased variability only during treatment delivery as the tumor moves in and out of the high photon fluence zone over the breathing cycles. PTV concept is presumed to introduce excessive and inconsistent GTV dose in lung stereotactic body radiotherapy (SBRT). That GTV median dose prescription (D50) and robust optimization are viable PTV–free solution (ICRU 91 report) to harmonize the GTV dose was investigated by comparisons with PTV–based SBRT plans

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.