Abstract

Physical arguments and comparisons with published experimental data suggest that in simple liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression and attendant suppression of electron screening, produced by increased nuclear agitation, and (iii) temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at the low-frequency end of the solid-state-like phonon spectrum. The results suggest that collision-induced electron cloud distortion plays a decisive role in single molecule dynamics: (i) electron cloud compression produces short-lived repulsive states and single molecule, self-diffusive hops, while (ii) shear-induced distortion generates viscosity and single-molecule-scale viscous drag. The results provide new insight into nonequilibrium molecular dynamics in nonpolar, nonmetallic liquids.

Highlights

  • Physical arguments and comparisons with published experimental data suggest that in simple liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression and attendant suppression of electron screening, produced by increased nuclear agitation, and (iii) temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at the low-frequency end of the solid-state-like phonon spectrum

  • This paper presents three results, which together, provide new insight into the dynamics of single molecules in nonpolar, nonmetallic liquids: (a) A simple physical model is proposed which suggests that: (i) liquid-state viscosity is produced by temperature-dependent London dispersion forces, and (ii) viscosity decay with increasing temperature reflects decreased electron screening of nuclear charge

  • While neutron and light-scattering experiments, as well as molecular dynamics simulations, instantaneous normal mode analyses, and molecular hydrodynamics expose and explain single-particle-scale and collective liquid-state dynamics, the descriptions are largely couched in terms of dynamical correlation functions

Read more

Summary

Introduction

Physical arguments and comparisons with published experimental data suggest that in simple liquids: (i) single-molecule-scale viscous forces are produced by temperature-dependent London dispersion forces, (ii) viscosity decay with increasing temperature reflects electron cloud compression and attendant suppression of electron screening, produced by increased nuclear agitation, and (iii) temperature-dependent self-diffusion is driven by a narrow band of phonon frequencies lying at the low-frequency end of the solid-state-like phonon spectrum. (b) A Langevin model of sub-collision time scale, single molecule dynamics, which explicitly accounts for solid-state-like phonon modes, leads to a physically consistent explanation for self- diffusion coefficients

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.