Abstract

In the design and stability of thermal engineering applications, a thorough understanding of the evolution of damage in the rock following high-temperature treatments is crucial. Hence, this study investigates the influence of high temperatures on Egyptian granodiorite rock properties, given its widespread use as ornamental stones and aggregate material for roadways. Temperature effects up to 800 °C on its physical and mechanical responses were examined in conjunction with microstructure alterations. The results show that the density of granodiorite decreases after heat exposure due to a gain in volume and a loss in mass, with volume expansion being the most important component. In addition, the uniaxial compressive strength increases up to 400 °C before reducing linearly as the temperature increases, while the elastic modulus and P-wave velocity show a reducing trend with the temperature. This study suggests that granodiorite has a thermal damage threshold of 400 °C, beyond which its microstructure and physical and mechanical characteristics deteriorate, and granodiorite becomes less brittle and more ductile. Hence, at the mutation range (between 400 and 600 °C), the physical and mechanical responses shift from a stable to an unstable state. As a result, the microstructure of the granodiorite samples was destroyed at 800 °C, resulting in a significant drop in compressive strength and dilemmas in measuring the P-wave and elastic modulus. Accordingly, the findings of this study can be used to aid in the safe handling of this rock in high-temperature conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.