Abstract

The analysis of the wave propagation behavior of a sandwich structure with a soft core and multi-hybrid nanocomposite (MHC) face sheets is carried out in the framework of the higher-order shear deformation theory (HSDT). In order to take into account the viscoelastic influence, the Kelvin-Voight model is presented. In this paper, the constituent material of the core is made of an epoxy matrix which is reinforced by both macro- and nano-size reinforcements, namely carbon fiber (CF) and carbon nanotube (CNT). The effective material properties like Young's modulus or density are derived utilizing a micromechanical scheme incorporated with the Halpin–Tsai model. Then, on the basis of an energy-based Hamiltonian approach, the equations of motion are derived. The detailed parametric study is conducted, focusing on the combined effects of the viscoelastic foundation, CNT' weight fraction, core to total thickness ratio, small radius to total thickness ratio, and carbon fiber angle on the wave propagation behavior of sandwich structure. The results show that as well as increasing the phase velocity of the sandwich structure by increasing the wave number, this influence will be much more effective by increasing the damping factor. It is also observed that there is a critical value for the viscoelastic foundation that the relation between wave number and phase velocity will change from direct to indirect. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call