Abstract

The changes in the structure and phase composition of glasses in the MgO–Al2O3–SiO2–TiO2 system (at different TiO2 contents and ratios MgO : Al2O3) upon their heat treatment in the temperature range 700–960°C are investigated by small-angle X-ray scattering (SAXS) technique and X-ray powder diffraction analysis. The influence of gallium oxide additives on the phase separation and crystallization is analyzed. It is demonstrated that the heat treatment results in the phase separation, which occurs through the spinodal decomposition mechanism. A regular structure formed upon phase separation is retained after the completion of crystallization in inhomogeneity regions. The interference effects due to the regularity in the distribution of nanocrystals in the vitreous matrix bring about a decrease in the light scattering intensity and provide transparency of glass-ceramic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.