Abstract
This work focuses on the persistence of lower-dimensional tori with prescribed frequencies and singular normal matrices in reversible systems. By the Kolmogorov–Arnold–Moser theory and the special structure of unperturbed nonlinear terms in the differential equation, we prove that the invariant torus with given frequency persists under small perturbations. Our result is a generalization of X. Wang et al [Degenerate lower dimensional tori in reversible systems. J. Math. Anal. Appl.387 (2012), 776–790].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.