Abstract

This paper investigates the periodic dynamics of a general class of time-varying delayed neural networks with discontinuous right-hand sides. By employing the topological degree theory in set-valued analysis, differential inclusions theory and Lyapunov-like approach, we perform a thorough analysis of the existence, uniqueness and global exponential stability of the periodic solution for the neural networks. Especially, some sufficient conditions are derived to guarantee the existence, uniqueness and global exponential stability of the equilibrium point for the autonomous systems corresponding to the non-autonomous neural networks. Furthermore, the global convergence of the output and the convergence in finite time of the state are also discussed. Without assuming the boundedness or monotonicity of the discontinuous neuron activation functions, the obtained results improve and extend previous works on discontinuous or continuous neural network dynamical systems. Finally, two numerical examples are provided to show the applicability and effectiveness of our main results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.