Abstract

In this paper, the performance of two-way relaying (TWR) multiuser mixed radio frequency/free space optical (RF/FSO) relay networks with opportunistic user scheduling and asymmetric channel fading is studied. First, closed-form expressions for the exact outage probability, asymptotic (high signal-to-noise ration (SNR)) outage probability, and average ergodic channel capacity are derived assuming heterodyne detection (HD) scheme. Additionally, impacts of several system parameters including number of users, pointing errors, and atmospheric turbulence conditions on the overall network performance are investigated. All the theoretical results are validated by Monte-Carlo simulations. The results show that the TWR scheme almost doubles the network ergodic capacity compared to that of one-way relaying (OWR) scheme with the same outage performance. Additionally, the overall diversity order of the network is shown to be affected not only by the number of users, but it is also a function of the pointing error and atmospheric turbulence conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call