Abstract

In magnetomotive (MM) ultrasound (US) imaging, magnetic nanoparticles (NPs) are excited by an external magnetic field and the tracked motion of the surrounding tissue serves as a surrogate parameter for the NP concentration. MMUS procedures exhibit weak displacement contrasts due to small forces on the NPs. Consequently, precise US-based displacement estimation is crucial in terms of a sufficiently high contrast-to-noise ratio (CNR) in MMUS imaging. Conventional MMUS detection of the NPs is based on samplewise evaluation of the phase of the in-phase and quadrature (IQ) data, where a low signal-to-noise ratio (SNR) in the data leads to strong phase noise and, thus, to an increased variance of the displacement estimate. This paper examines the performance of two time-domain displacement estimators (DEs) for MMUS imaging, which differ from conventional MMUS techniques by incorporating data from an axial segment. The normalized cross correlation (NCC) estimator and a recursive Bayesian estimator, incorporating spatial information from neighboring segments, weighted by the local SNR, are adapted for the small MMUS displacement magnitudes. Numerical simulations of MM-induced, time-harmonic bulk and Gaussian-shaped displacement profiles show that the two time-domain estimators yield a reduced estimation error compared to the phase-shift-based estimator. Phantom experiments, using our recently proposed magnetic excitation setup, show a 1.9-fold and 3.4-fold increase of the CNR in the MMUS images for the NCC and Bayes estimator compared to the conventional method, while the amount of required data is reduced by a factor of 100.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.