Abstract

The authors analyze the problem of noncoherent FM demodulation of trellis-coded continuous-phase M-ary FSK (frequency-shift keying). The FM demodulation process is divided into two parts, the first being the actual noncoherent FM demodulation and the second being trellis decoding of the data. Upper bounds on the bit error rate as well as the 99% energy bandwidth are determined for the codes under consideration. In particular, the authors consider the trellis codes with rates 1/2 and 2/3 and symmetric and asymmetric signal constellations. Upper bounds on the probability of error are obtained for the symmetric and the optimum asymmetric cases. The optimum asymmetry is one which minimizes the bit error probability. The performance of this system is compared to that of the standard continuous phase modulation techniques employing noncoherent detection.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call