Abstract

The nonlinear distortion introduced by the dead time strongly limits the throughput of the highly sensitive SPAD-based optical wireless communication (OWC) systems. Optical OFDM can be employed in the systems with SPAD arrays to improve the spectral efficiency. In this work, a theoretical performance analysis of SPAD-based OWC system with asymmetrically-clipped optical OFDM (ACO-OFDM) is presented. The impact of the SPAD nonlinearity on the system performance is investigated. In addition, the comparison of the considered scheme with DCO-OFDM is presented showing the distinct reliable operation regimes of the two schemes. In low optical power regimes, ACO-OFDM outperforms DCO-OFDM with around 4 dB power gain achieved by 16-QAM ACO-OFDM over 4-QAM DCO-OFDM. However, DCO-OFDM is in turn more preferable in high power regimes which extends the maximal tolerable received optical power by 7.4 dB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call