Abstract

Thermal energy storage has been attracting more and more attentions due mainly to its distinctive features on peak-load shifting capability for systems with renewable energy involved. To further improve the overall thermal efficiency for charging/discharging processes, heat transfer techniques to enhance phase change heat transfer are typically employed. This paper introduced a novel concept of partially-filling ratio of metal foam into PCM. The melting heat transfer can be expected to be further enhanced with partially filled metal foams. To this aim, an axisymmetric two-dimensional computational model was established. A series of numerical simulations were carried out to study the effect of filling ratio of metal foam on the melting performance of a TES tube. Good agreement was achieved through the comparison of temperatures obtained from simulation and experimental measurements. Based on the results, it can be concluded as follows: if the goal was to enhance heat transfer simultaneously to save material cost, the suggested filling ratio was 0.90; if saving material cost was the aim, the filling ratio can be further reduced to 0.85. The proposed novel TES unit with partially-filled metal foam outperformed other competing heat transfer technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.