Abstract

A common technique for wireless positioning is to estimate time-of-arrivals (TOAs) of signals traveling between a target node and a number of reference nodes, and then to determine the position of the target node based on those TOA parameters. In determining the position of the target node from TOA parameters, linear or nonlinear least-squares (LS) estimation techniques can be employed. Although the linear LS techniques are suboptimal in general, they facilitate low- complexity position estimation. In this paper, performance of various linear LS techniques are compared, and suboptimality of the linear approach is quantified in terms of the Cramer-Rao lower bound (CRLB). Simulations are performed to compare the performance of the linear LS approaches versus the CRLBs for linear and nonlinear techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.