Abstract
The downlink (DL) of a non-orthogonal-multiple-access (NOMA)-based cell-free massive multiple-input multiple-output (MIMO) system is analyzed, where the channel state information (CSI) is estimated using pilots. It is assumed that the users are grouped into multiple clusters. The same pilot sequences are assigned to the users within the same clusters whereas the pilots allocated to all clusters are mutually orthogonal. First, a user's bandwidth efficiency (BE) is derived based on his/her channel statistics under the assumption of employing successive interference cancellation (SIC) at the users' end with no DL training. Next, the classic max-min optimization framework is invoked for maximizing the minimum BE of a user under per-access point (AP) power constraints. The max-min user BE of NOMA-based cell-free massive MIMO is compared to that of its orthogonal multiple-access (OMA) counter part, where all users employ orthogonal pilots. Finally, our numerical results are presented and an operating mode switching scheme is proposed based on the average per-user BE of the system, where the mode set is given by Mode = { OMA, NOMA }. Our numerical results confirm that the switching point between the NOMA and OMA modes depends both on the length of the channel's coherence time and on the total number of users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.