Abstract

Data centers have to sustain the rapid growth of data traffic due to the increasing demand of bandwidth-hungry Internet services. The current fat tree topology causes communication bottlenecks in the server interaction process, resulting in power-hungry O-E-O conversions that limit the minimum latency and the power efficiency of these systems. As a result, recent efforts have advocated that all optical data center networks (DCNs) have the capability to adapt to traffic requirements on demand. We present the design, implementation, and evaluation of a cascaded microelectromechanical systems switches-based DCN architecture which dynamically changes its topology and link capacities, thereby achieving unprecedented flexibility to adapt to dynamic traffic patterns. We analyze it under a data center traffic model to determine its suitability for this type of environment. The proposed architecture can be scaled to 3300 input/output ports by available experimental components with low blocking probability and latency. The blocking probability and latency are about 0.03 and 72 ms at a moderate traffic load for 32 input/output ports based on our numerical results, which are much smaller than the results for 4 input/output ports which are 0.13 and 235 ms, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call