Abstract

Designing algorithms for distributed systems that provide a round abstraction is often simpler than designing for those that do not provide such an abstraction. However, distributed systems need to tolerate various kinds of failures. The concept of a synchronizer deals with both: It constructs rounds and allows masking of transmission failures. One simple way of dealing with transmission failures is to retransmit a message until it is known that the message was successfully received. We calculate the exact value of the average rate of a retransmission-based synchronizer in an environment with probabilistic message loss, within which the synchronizer shows nontrivial timing behavior. The theoretic results, based on Markov theory, are backed up with Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.