Abstract
This paper focusses on the sparse estimation in the situation where both the the sensing matrix and the measurement vector are corrupted by additive Gaussian noises. The performance bound of sparse estimation is analyzed and discussed in depth. Two types of lower bounds, the constrained Cram\'{e}r-Rao bound (CCRB) and the Hammersley-Chapman-Robbins bound (HCRB), are discussed. It is shown that the situation with sensing matrix perturbation is more complex than the one with only measurement noise. For the CCRB, its closed-form expression is deduced. It demonstrates a gap between the maximal and nonmaximal support cases. It is also revealed that a gap lies between the CCRB and the MSE of the oracle pseudoinverse estimator, but it approaches zero asymptotically when the problem dimensions tend to infinity. For a tighter bound, the HCRB, despite of the difficulty in obtaining a simple expression for general sensing matrix, a closed-form expression in the unit sensing matrix case is derived for a qualitative study of the performance bound. It is shown that the gap between the maximal and nonmaximal cases is eliminated for the HCRB. Numerical simulations are performed to verify the theoretical results in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.