Abstract
Abstract High Performance Computing (HPC) accelerates life science discoveries by enabling scientists to analyze large data sets, to develop detailed models of entire biological systems and to simulate complex biological processes. As computational experiments, molecular dynamics simulations are widely used in life sciences to evaluate the equilibrium nature of classical many-body systems The modelling and molecular dynamics study of surfactant, polymer solutions and the stability of proteins and nucleic acids under different conditions, as well as deoxyribonucleic acid proteins are studied. The study aims to understand the scaling behavior of Gromacs (Groningen machine for chemical simulations) on various platforms, and the maximum performance in the prospect of energy consumption that can be accomplished by tuning the hardware and software parameters. Different system sizes (48K, 64K, and 272K) from scientific investigations have been studied show that the GPU (Graphics Processing Unit) scales rather beneficial than other resources, i.e., with GPU support. We track 2-3 times speedup compared to the latest multi-core CPUs. However, the so-called “threading effect” leads to the better results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.