Abstract

AbstractThe initial breakdown (IB) stage of lightning flashes typically occurs in the first 20 ms of a flash and includes a series of IB pulses often detected with electric field change sensors. There is disagreement about the percentage of negative cloud‐to‐ground (CG) flashes that begin with IB pulses. This study includes new data on IB pulses in 198 CG flashes in Austria (latitude ~48˚N), Florida, USA (~29˚N) and South Dakota, USA (~44˚N) with, respectively, 100%, 100%, and 95% of the flashes having IB pulses. The data indicate that the amplitude of the largest IB pulse, range normalized to 100 km, is often weak, < 0.5 V m−1, with the lower latitude having a greater percentage (36%) of these weak maximum IB pulses than the higher latitude (11%). Since sensor noise levels are often larger than this value, detection of smaller amplitude IB pulses may be difficult. A similar result is seen in the amplitude ratio of the largest IB pulse to the first return stroke: at the lower latitude, 50% of flashes had a ratio < 0.1 versus 8% of flashes at the higher latitude. However, comparisons of the amplitude ratios from Austria (~48˚) and South Dakota (~44˚) do not support a simple latitude dependence. The data also show that 5–10% of IB pulses occur more than 100 ms before the first return stroke. These findings may explain why some previous studies found percentages <100%. Overall, the results indicate that all negative CG flashes probably begin with IB pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call