Abstract

Density functional calculations have been performed on M2X6 complexes (where M = U, W, and Mo and X = Cl, F, OH, NH2, and CH3) to investigate general aspects of their electronic structures and explore the similarities and differences in metal-metal bonding between f-block and d-block elements. A detailed analysis of the metal-metal interactions has been conducted using molecular orbital theory and energy decomposition methods. Multiple (sigma and pi) bonding is predicted for all species investigated, with predominant f-f and d-d metal orbital character, respectively, for U and W or Mo complexes. The energy decomposition analysis involves contributions from orbital interactions (mixing of occupied and unoccupied orbitals), electrostatic effects (Coulombic attraction and repulsion), and Pauli repulsion (associated with four-electron two-orbital interactions). The general results suggest that the overall metal-metal interaction is stronger in the Mo and W species, relative to the U analogues, as a consequence of a significantly less destabilizing contribution from the combined Pauli and electrostatic ("pre-relaxation") effects. Although the orbital-mixing ("post-relaxation") contribution to the total bonding energy is predicted to have a larger magnitude in the U complexes, this is not sufficiently strong to compensate for the comparatively greater destabilization that originates from the Pauli-plus-electrostatic effects. Of the pre-relaxation terms, the Pauli repulsion is comparable in analogous U and d-block compounds, contrary to the electrostatic term, which is (much) less favorable in the U systems than in the W and Mo systems. This generally weak electrostatic stabilization accounts for the large pre-relaxation destabilization in the U complexes and, ultimately, for the relative weakness of the U-U bonds. The origin of the small electrostatic term in the U compounds is traced primarily to MX(3) fragment overlap effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.