Abstract
We develop a theory of covering digraphs, similar to the theory of covering spaces. By applying this theory to Cayley digraphs, we build a “bridge” between GLMY-theory and group homology theory, which helps to reduce path homology calculations to group homology computations. We show some cases where this approach allows us to fully express path homology in terms of group homology. To illustrate this method, we provide a path homology computation for the Cayley digraph of the additive group of rational numbers with a generating set consisting of inverses to factorials. The main tool in our work is a filtered simplicial set associated with a digraph, which we call the filtered nerve of a digraph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.