Abstract

In this paper, we propose a recursive variant of the Parzen kernel density estimator (KDE) to track changes of dynamic density over data streams in a nonstationary environment. In stationary environments, well-established traditional KDE techniques have nice asymptotic properties. Their existing extensions to deal with stream data are mostly based on various heuristic concepts (losing convergence properties). In this paper, we study recursive KDEs, called recursive concept drift tracking KDEs, and prove their weak (in probability) and strong (with probability one) convergence, resulting in perfect tracking properties as the sample size approaches infinity. In three theorems and subsequent examples, we show how to choose the bandwidth and learning rate of a recursive KDE in order to ensure weak and strong convergence. The simulation results illustrate the effectiveness of our algorithm both for density estimation and classification over time-varying stream data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.