Abstract

We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.