Abstract

It is a known fact that the Wiener index (i.e. the sum of all distances between pairs of vertices in a graph) of a tree with an odd number of vertices is always even. In this paper, we consider the distribution of the Wiener index and the related tree parameter “internal path length” modulo 2 by means of a generating functions approach as well as by constructing bijections for plane trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.