Abstract

A matching is a set of edges in a graph with no common endpoint. A matching $M$ is called acyclic if the induced subgraph on the endpoints of the edges in $M$ is acyclic. Given a graph $G$ and an integer $k$, Acyclic Matching Problem seeks for an acyclic matching of size $k$ in $G$. The problem is known to be NP-complete. In this paper, we investigate the complexity of the problem in different aspects. First, we prove that the problem remains NP-complete for the class of planar bipartite graphs of maximum degree three and arbitrarily large girth. Also, the problem remains NP-complete for the class of planar line graphs with maximum degree four. Moreover, we study the parameterized complexity of the problem. In particular, we prove that the problem is W[1]-hard on bipartite graphs with respect to the parameter $k$. On the other hand, the problem is fixed parameter tractable with respect to $k$, for line graphs, $C_4$-free graphs and every proper minor-closed class of graphs (including bounded tree-width and planar graphs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.