Abstract

We present the first results on the parameterized complexity of reconfiguration problems, where a reconfiguration version of an optimization problem Q takes as input two feasible solutions S and T and determines if there is a sequence of reconfiguration steps that can be applied to transform S into T such that each step results in a feasible solution to Q. For most of the results in this paper, S and T are subsets of vertices of a given graph and a reconfiguration step adds or deletes a vertex. Our study is motivated by recent results establishing that for most NP-hard problems, the classical complexity of reconfiguration is PSPACE-complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.