Abstract

In this paper we study the page number of upward planar directed acyclic graphs. We prove that: (1) the page number of any n-vertex upward planar triangulation G whose every maximal 4-connected component has page number k is at most min {O(klogn),O(2k)}; (2) every upward planar triangulation G with $o(\frac{n}{\log n})$ diameter has o(n) page number; and (3) every upward planar triangulation has a vertex ordering with o(n) page number if and only if every upward planar triangulation whose maximum degree is $O(\sqrt n)$ does.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.