Abstract

The behavior of oxygen atoms in (0.5 – 1.0) mm thick Ti films is investigated under high-flux, low-energy molecular water ion irradiation. The anomalously deep penetration of oxygen without formation of new compounds observable by XRD has been registered after 10 min of irradiation at room temperature using Auger Electron spectroscopy analysis. The mechanism driving oxygen atoms from the surface into the bulk is discussed. It is based on the results of experimental studies of surface topography and assumption that the surface energy increases under ion irradiation, and relaxation processes minimizing the surface energy initiate the atomic redistribution on the surface and in the bulk. Two processes minimizing the surface free energy are considered: (i) the mixing of atoms on the surface, and (ii) the annihilation of surface vacancies by the atoms transported from the bulk to the surface. DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3822

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.