Abstract

In the present work, the influence of oxidation on the martensitic transformation in Ti–Ta high-temperature shape memory alloys is investigated. Thermogravimetric analysis in combination with microstructural investigations by scanning electron microscopy and transmission electron microscopy were performed after oxidation at 850 °C and at temperatures in the application regime of 450 °C and 330 °C for 100 h, respectively. At 850 °C, internal oxidation results in the formation of a mixed layered scale of TiO2 and β-Ta2O5, associated with decomposition into Ta-rich bcc β-phase and Ti-rich hexagonal α-phase in the alloy. This leads to a suppression of the martensitic phase transformation. In addition, energy dispersive X-ray analysis suggests an oxygen stabilization of the α-phase. At 450 °C, a slow decomposition into Ta-rich β-phase and Ti-rich α-phase is observed. After oxidation at 330 °C, the austenitic matrix shows strong precipitation of the ω-phase that suppresses the martensitic transformation on cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.