Abstract

Differences between certain solvable and nonsolvable ill-posed integral equations, with the same nonsingular kernel, are discussed. The main results come from constructing a solvable equation in the context of straight thin-wire antennas. The kernel of this equation is the usual approximate (also called reduced) kernel, while its exact solution is the familiar sinusoidal current. Numerical solutions to this solvable equation are compared to corresponding numerical solutions of the usual-Halle¿n and Pocklington-equations with the approximate kernel; it is known from previous publications that these last two equations are nonsolvable and that their numerical solutions present severe oscillations when the number of basis functions is sufficiently large. It is found that the difficulties encountered in the former (solvable) equation are much less important compared to those of the nonsolvable ones. The same conclusion is brought out from other integral equations, arising in different contexts (thin-wire circular-loop antenna, Method of Auxiliary Sources, and straight wire antenna of infinite length). We discuss the consistency of our results with Picard's theorem. The results in this paper supplement previous publications regarding the difficulties of numerically solving thin-wire integral equations with the approximate kernel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.