Abstract

In this paper, we consider the third-order nonlinear neutral delay dynamic equations $$\begin{aligned} \left( b(t)\left( \left( ((x(t)-p(t)x(\tau (t)))^\Delta )^{\alpha _1}\right) ^\Delta \right) ^{\alpha _2}\right) ^\Delta +f(t,x(\delta (t)))=0 \end{aligned}$$ on a time scale \(\mathbb {T}\), where \(\alpha _i\) are quotients of positive odd integers, \(i=1\), 2, \(|f(t,u)|\ge q(t)|u|\), \(b,\ p\) and q are real-valued positive rd-continuous functions defined on \(\mathbb {T}\). By using the Riccati transformation technique and integral averaging technique, some new sufficient conditions which ensure that every solution oscillates or tends to zero are established. Our results are new for third-order nonlinear neutral delay dynamic equations and extend many known results for oscillation of third order dynamic equations. Some examples are given here to illustrate our main results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.