Abstract
The idea of this review article is to discuss in a unified way the orthogonality of all positive definite polynomial solutions of the $q$-hypergeometric difference equation on the $q$-linear lattice by means of a qualitative analysis of the $q$-Pearson equation. Therefore, our method differs from the standard ones which are based on the Favard theorem, the three-term recurrence relation and the difference equation of hypergeometric type. Our approach enables us to extend the orthogonality relations for some well-known $q$-polynomials of the Hahn class to a larger set of their parameters. A short version of this paper appeared in SIGMA 8 (2012), 042, 30 pages http://dx.doi.org/10.3842/SIGMA.2012.042.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.