Abstract
Reactions involving the transfer of a phosphoryl (-PO32-) group are fundamental to cellular metabolism. These reactions are catalyzed by enzymes, often large and complex, belonging to the phosphate-binding loop (P-loop) nucleoside triphosphatase (NTPase) superfamily. Due to their critical importance in life, it is reasonable to assume that phosphoryl-transfer reactions were also crucial in the pre-LUCA (last universal common ancestor) world and mediated by precursors that were simpler, in terms of their sequence and structure, relative to their modern-day enzyme counterparts. Here, we demonstrate that short phosphate-binding polypeptides (∼50 residues) comprising a single, ancestrally inferred, P-loop or Walker A motif mediate the reversible transfer of a phosphoryl group between two adenosine diphosphate molecules to synthesize adenosine triphosphate and adenosine monophosphate. This activity, although rudimentary, bears resemblance to that of adenylate kinase (a P-loop NTPase enzyme). The polypeptides, dubbed as "P-loop prototypes", thus relate to contemporary P-loop NTPases in terms of their sequence and function, and yet, given their simplicity, serve as plausible representatives of the early "founder enzymes" involved in proto-metabolic pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.