Abstract

Previous reports suggest that Raman peaks in uniaxially loaded nanowires with diamond cubic and zinc blende crystal structures shift at rates that are significantly different from bulk specimens. We have investigated the first order Raman scattering from individual, free-standing, [111] oriented GaP nanowires ranging from 75 to 180 nm in diameter at uniaxial tensile stresses up to 5 GPa. All of the phonon modes were shifted to frequencies lower than previously reported for bulk GaP, and significant splitting of the degenerate transverse optical mode was observed. A general analysis method using single and double Lorentzian fits of the Raman peaks is presented and used to report more accurate values of the phonon deformation potentials (PDPs) that relate uniaxial strains to Raman peak shifts in GaP. A new set of PDPs determined from the nanowires revealed that the they have elastic moduli and failure strains that are consistent with bulk GaP. The analysis method eliminated the anomalous, inconsistent deformation behavior commonly reported in Raman-based strain measurements of nanowires, and can be extended to other materials systems with degenerate phonons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call