Abstract
Plane-wave-based pseudopotential density functional theory (DFT) calculations are used to elucidate the origin of the high photocatalytic efficiency of carbonate-doped TiO(2). Two geometrically possible doping positions are considered, including interstitial and substitutional carbon atoms on Ti sites. From the optical absorption properties calculations, we believe that the formation of carbonates after doping with interstitial carbon atoms is crucial, whereas the contribution from the cationic doping on Ti sites is negligible. The carbonate species doped TiO(2) exhibits excellent absorption in the visible-light region of 400-800 nm, in good agreement with experimental observations. Electronic structure analysis shows that the carbonate species introduce an impurity state from Ti 3d below the conduction band. Excitations from the impurity state to the conduction band may be responsible for the high visible-light activity of the carbon doped TiO(2) materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.