Abstract

A scenario for the origin of the system PSR B 1757-24/supernova remnant (SNR) G5.4-1.2 is proposed. It is suggested that both objects are the remnants of a supernova (SN) that exploded within a pre-existing bubble blown-up by a runaway massive star (the SN progenitor) during the final (Wolf-Rayet) phase of its evolution. This suggestion implies that (a) the SN blast centre was significantly offset from the geometric centre of the wind-blown bubble (i.e. from the centre of the future SNR), (b) the bubble was surrounded by a massive wind-driven shell, and (c) the SN blast wave was drastically decelerated by the interaction with the shell. Therefore, one can understand how the relatively young and low-velocity pulsar PSR B 1757-24 was able to escape from the associated SNR G 5.4-1.2 and why the inferred vector of pulsar transverse velocity does not point away from the geometric centre of the SNR. A possible origin of the radio source G 5.27-0.9 (located between PSR B 1757-24 and the SNR G 5.4-1.2) is proposed. It is suggested that G 5.27-0.9 is a lobe of a low Mach number (≃1.7) jet of gas outflowing from the interior of G5.4-1.2. through the hole bored in the SNR's shell by the escaping pulsar. It is also suggested that the non-thermal emission of the comet-shaped pulsar wind nebula originates in the vicinity of the termination shock and in the cylindric region of subsonically moving shocked pulsar wind. The role of magnetized wind-driven shells (swept-up during the Wolf-Rayet phase from the ambient interstellar medium with the regular magnetic field) in formation of elongated axisymmetric SNRs is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call