Abstract

Papain-like cysteine proteases are ubiquitous proteolytic enzymes. The protonated His199/deprotonated Cys29 ion pair (cathepsin B numbering) in the active site is essential for their proper functioning. The presence of this ion pair stands in contrast to the corresponding intrinsic residue p K a values, indicating a strong influence of the enzyme environment. In the present work we show by molecular dynamics simulations on quantum mechanical/molecular mechanical (QM/MM) potentials that the ion pair is stabilized by a complex hydrogen bond network which comprises several amino acids situated in the active site of the enzyme and 2-4 water molecules. QM/MM reaction path computations for the proton transfer from His199 to the thiolate of the Cys29 moiety indicate that the ion pair is about 32-36 kJ mol (-1) more stable than the neutral form if the whole hydrogen bonding network is active. Without any hydrogen bonding network the ion pair is predicted to be significantly less stable than the neutral form. QM/MM charge deletion analysis and QM model calculations are used to quantify the stabilizing effect of the active-site residues and the L1 helix in favor of the zwitterionic form. The active-site water molecules contribute about 30 kJ mol (-1) to the overall stabilization. Disruption of the hydrogen bonding network upon substrate binding is expected to enhance the nucleophilic reactivity of the thiolate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.