Abstract

We examined why the 1T-VS(2) layer of the layered compound Sr(6)V(9)S(22)O(2) has the x superstructure in terms of electronic band structure calculations and metal-metal bonding across the shared edges of adjacent VS(6) octahedra. On the basis of this analysis we explored how the anomalous magnetic and transport properties of Sr(6)V(9)S(22)O(2) can be explained. Our work shows that the x superstructure is not caused by a charge density wave instability associated with Fermi surface nesting but by the metal-metal bonding through the shared edges of adjacent VS(6) octahedra. The weak and strong electron localizations observed for Sr(6)V(9)S(22)O(2) were discussed in terms of three-center two-electron and two-center two-electron V-V bonds in the 1T-VS(2) layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.