Abstract

We present medium and high resolution X-ray spectral study of a Seyfert 1 galaxy ESO~198--G24 using a long (122 ks) XMM-Newton observation performed in February 2006. The source has a prominent featureless soft X-ray excess below $2\kev$. This makes the source well suited to investigate the origin of the soft excess. Two physical models -- blurred reflection, and optically thick thermal Comptonization in a warm plasma, describe the soft-excess equally well resulting in similar fits in the $0.3-10\kev$ band. These models also yield similar fits to the broad-band UV (Optical Monitor) and X-ray data. XMM-Newton observations performed in 2000, 2001 and 2006 on this source show flux variability. From 2001 to 2006, the UV flux increased by $\sim23\%$ while the $2-10\kev$ X-ray flux as well as the soft-excess flux decreased by ~ 20. This observation can be described in the blurred reflection scenario by a truncated accretion disk whose inner-most radius had come closer to the blackhole. We find that the best-fit inner radius of the accretion disk decreases from R_{in}=4.93_{-1.10}^{+1.12}R_G to R_{in}<2.5R_G from 2001 to 2006. This leads to an increase in the UV flux and compressing the corona, leading to reduction of the powerlaw flux and therefore the soft-excess. The blurred reflection model seems to better describe the soft-excess for this source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call